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Large-scale particle-driven gravity currents occur in the atmosphere, often in the
form of pyroclastic flows that result from explosive volcanic eruptions. The behaviour
of these gravity currents is analysed here and it is shown that compressibility can
be important in flow of such particle-laden gases because the presence of particles
greatly reduces the density scale height, so that variations in density due to compress-
ibility are significant over the thickness of the flow. A shallow-water model of the
flow is developed, which incorporates the contribution of particles to the density and
thermodynamics of the flow. Analytical similarity solutions and numerical solutions
of the model equations are derived. The gas–particle mixture decompresses upon
gravitational collapse and such flows have faster propagation speeds than incom-
pressible currents of the same dimensions. Once a compressible current has spread
sufficiently that its thickness is less than the density scale height it can be treated as
incompressible. A simple ‘box-model’ approximation is developed to determine the
effects of particle settling. The major effect is that a small amount of particle settling
increases the density scale height of the particle-laden mixture and leads to a more
rapid decompression of the current.

1. Introduction
Particle-driven gravity currents are a form of buoyancy-driven flow that arises from

a suspension of solid particles (for example, a silt-laden flow along the ocean floor or
an avalanche). Large-scale particle-driven gravity currents occur in the atmosphere,
for example, when a cold atmospheric flow passes over sandy or dusty land and
entrains particles to form a severe dust storm, or as a result of explosive volcanic
activity. During some explosive volcanic eruptions, a hot dispersion of gas and rock
fragments is ejected from the vent of the volcano into the atmosphere and collapses
to form a dense, laterally spreading pyroclastic flow. Pyroclastic flows can be up to
several thousands of cubic kilometres in volume, propagating for tens of kilometres
from the vent of a volcano at speeds over 200 m s−1 (Sparks et al. 1997).

Particle-driven gravity currents have been studied extensively, as reviewed by Simp-
son (1987) and Huppert (1998, 2000). Von Kármán (1940), and later Benjamin (1968),
investigated theoretically the steady-state characteristics of an incompressible gravity
current. In particular, they analysed the dynamics at the leading edge (or front) of a
large Reynolds number gravity current of density ρ, propagating at constant speed
over a horizontal surface into a quiescent surrounding fluid, of density ρa, as shown
in figure 1. They found that the velocity u at the front of the current and the height
h (away from the turbulent frontal region) are related by u = Fr [(ρ − ρa)gh/ρa]1/2,
where the dimensionless constant Fr is known as the Froude number. A relationship
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Figure 1. Schematic diagram of a gravity current of density ρ intruding at speed u into an infinitely
deep body of surrounding fluid of smaller density. The dashed outline indicates the initial state
(prior to collapse) of the gravity current.

of this form quantifies the resistance to the motion of the front due to the inertia
of the surrounding fluid, viscous drag and turbulent Reynolds stress on the head of
the current. Almost all subsequent theoretical studies of a gravity current on a solid
boundary have used this front condition as a quasi-steady boundary condition to
relate the speed dxF (t)/dt of the front at xF (t) to the height behind the front.

Bonnecaze, Huppert & Lister (1993) employed shallow-water theory to model the
evolution from a state of rest of an incompressible particle-driven gravity current
of fixed volume. Their study, which included comparisons with laboratory exper-
iments, showed that the shallow-water equations, together with the front condition,
accurately describe the flow evolution, including the settling of particles from the cur-
rent as it propagates. Furthermore, Klemp, Rotunno & Skamarock (1994) employed
a two-dimensional numerical model of a particle-free current to show that such
shallow-water analyses capture the basic features that appear in the two-dimensional
simulations. A simpler ‘box-model’ formulation, in which the current is assumed
to evolve through a series of equal-area rectangles, has also been used to describe
the basic properties of incompressible gravity currents (Huppert 1998, 2000). These
horizontally averaged models often have the advantage of yielding solutions that
can be expressed analytically in closed form. For example, Dade & Huppert (1996)
constructed a box model to explain geological deposits from the Taupo volcano. They
modelled the parent pyroclastic flow as a dilute, turbulent suspension and, through
comparison with observational data, estimated an initial volume concentration of
0.3%.

Relatively few papers have considered the compressibility of a gas–particle gravity
current. In order to understand the important problem of hazardous pyroclastic
flows from explosive volcanic eruptions, models have been formulated to describe
the fluid dynamics and thermodynamics of the gravitational collapse of an erupted
volcanic mixture and the subsequent pyroclastic flow formation (Valentine & Wohletz
1989; Dobran & Neri 1993; Neri & Macedonio 1996). These complex numerical
simulations are based on two-species turbulent-flow models and have a large number
of adjustable parameters. In order to understand planetary-scale dust storms on
Mars, Parsons (2000) describes them as compressible particle-driven gravity currents
and argues that a plausible mechanism for the observed rapid growth of these flows
is particle entrainment due to the passage of laterally propagating compressional
shock waves. While we will show that a compressible current does not support
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compressional shocks of this sort (contrast one-dimensional gas dynamics in shock
tubes), our analysis provides an alternative explanation for these storms.

In incompressible analyses, the basic approximation applied is that the current is
confined to a layer whose thickness is much less than its density scale height Hρ,
defined as the typical value of ρ/|dρ/dz|, where z denotes the vertical coordinate.
Here, we show that the presence of particles in large-scale atmospheric gravity currents
dramatically reduces the density scale height, so that variations in density due to
compressibility are significant over the thickness of the flow. We analyse compressible
currents within a similar framework to previous analyses of incompressible high
Reynolds number gravity currents, in which the assumption is made that viscous
forces are negligible and so the force balance is dominated by inertia and buoyancy.
We use shallow-water theory to model an isentropic flow that originates from the
instantaneous gravitational collapse of a fixed mass of gas and particles into lighter,
infinitely deep surroundings. In addition, we investigate the effects of particle settling.
We use parameter values typical of pyroclastic flows in order to illustrate the effects
of compressibility. However, the equations and physical concepts presented here are
also relevant to dust storms and provide a framework, for example, for modelling the
rapid growth of dust storms on Mars.

This paper is organized as follows. The general properties (including assumptions)
of the two-phase mixture are described in § 2, and we derive expressions for its
temperature, pressure and density. In § 3, we consider flows with a constant mass
fraction of particles and derive analytical similarity solutions as well as numerical
solutions of the shallow-water equations, giving typical height and velocity profiles of
a compressible particle-laden current. In § 4, we employ a box model to describe the
effects of particle settling. We summarize our findings in the concluding section.

2. Thermodynamic properties of gas–particle mixtures
We make the following assumptions about the gas–particle mixture that forms the

gravity current: (1) the particles are mono-disperse; (2) the mixture is dilute, so that
interactions between the particles may be neglected and the pressure of the mixture is
equal to that of the (ideal) gas phase alone; (3) vigorous turbulent mixing ensures that
the particles are vertically well-mixed; and (4) the gas and particles are in thermal
equilibrium.

We make assumption (1) for simplicity; the model could readily be modified to
account for a polydisperse particle distribution (see, for example, Dade & Huppert
1996). Justification of assumptions (2) and (3) has been given by Dade & Huppert
(1996), who modelled pyroclastic flows as low-concentration particle-driven gravity
currents. Their box-model formulation was used together with observations of geo-
logical deposits to deduce that these deposits were formed by a dilute and highly
turbulent flow. Assumption (4) can be justified for a powerful volcanic eruption, in
which the mean diameter of the pyroclasts in the mixture is typically 1 mm or less
(Woods 1995). Diffusion of heat through the solid particles determines the rate at
which solid particles transfer their heat to the gas. This time is of order d2/κ, where
d is the particle diameter and κ ≈ 10−6 m2 s−1 is the thermal diffusivity of the solid
particle. Hence, particles less than 1 mm in diameter equilibrate thermally in less
than a second, which is much shorter than the timescale (h0/g)1/2 for the current to
propagate a distance equal to its initial height h0.

The density ρ of a particle-driven gravity current can be expressed as a function of
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the particle density ρp and the interstitial gas density ρg by

1

ρ
=

1− φ
ρg

+
φ

ρp
, (2.1)

where φ is the mass fraction occupied by the particles, which remains constant during
any thermodynamic process. Since ρp � ρg , the mass fraction φ can be close to 1,
even though the volume fraction φρ/ρp is assumed to be small.

In the following subsections, we derive relations for the temperature, pressure and
density as functions of height in the gas–particle mixture.

2.1. Equation of state

We model the gas as ideal and thus the pressure, which is equal to that of the gas
phase, is given by

p = ρgRT , (2.2)

where T is the temperature, R = cp − cv is a constant for any particular gas, equal
to the universal gas constant divided by the molecular weight of the gas, and cp
and cv are the specific heat capacities of the gas at constant pressure and volume
respectively. Using (2.1), we can express the pressure as

p = ρRmT , (2.3)

where Rm = R(1 − φ) and we have neglected the volume of the particles (i.e.
φρ/ρp � 1). This is a reasonable assumption given the typical parameter values
of a pyroclastic flow, ρp = 2000 kg m−3, ρg = 0.4 kg m−3 (at around 500 K) and
φ = 0.96 (Woods 1995). Equation (2.3) shows that the mixture of gas and particles
behaves as an ideal ‘pseudo gas’ with a modified gas constant Rm (Wallis 1969).

2.2. Vertical profile

We assume that the pressure in the mixture varies hydrostatically with height z,

dp

dz
= −ρg. (2.4)

The change in heat flow dQ between the system and its surroundings is given by the
differential form of the First Law of Thermodynamics for a reversible process (Wood
& Battino 1990),

dQ = cpmdT − T ∂

∂T

(
1

ρ

)
p

dp, (2.5)

where cpm is the specific heat capacity of the mixture at constant pressure. Similarly, let
cvm denote the specific heat capacity at constant volume. The specific heat capacities
of the mixture are given by

cpm = φc+ (1− φ)cp and cvm = φc+ (1− φ)cv, (2.6a, b)

where c is the specific heat of the incompressible solid particles, for which the specific
heats at constant volume and constant pressure can be taken to be equal (Bohren &
Albrecht 1998). All heat capacities are assumed to be constant.

We take dQ = 0 under the assumption that the timescale of thermal diffusion over
the current is considerably longer than the timescale of fluid motion in the current
(i.e. the flow is adiabatic). Hence, we couple (2.1), (2.2) and (2.5) to deduce that

cpm dT =
(1− φ)

ρg
dp. (2.7)
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Recall that we are assuming a sufficiently vigorous flow that turbulent mixing main-
tains a vertically uniform particle mass fraction φ. We use (2.7) with (2.4) to deduce
that the vertical temperature gradient in the mixture is constant,

dT

dz
= − g

cpm
, (2.8)

where again we have neglected the volume of the particles. We solve (2.8) to obtain
the temperature profile

T (x, z, t) = Ti

[
1 +

(h− z)
H

]
, (2.9)

where Ti is the temperature at the top of the current (z = h) and H = cpmTi/g has
the dimensions of length. To a good approximation for our applications, we take
cpm ≈ cp, a constant (i.e. H = cpTi/g) (Woods 1988). This does not change the value
of Rm.

We couple (2.2) with (2.7) to obtain the isentropic relations,

T

Ti
=

(
p

pa

)(γ−1)/γ

=

(
ρg

ρgi

)γ−1

, (2.10a, b)

where γ = cpm/cvm is the isentropic exponent of the mixture and ρgi is the density of
the gas at z = h. We substitute (2.9) into (2.10a) and (2.10b) to find the pressure and
the density of the mixture,

p(x, z, t) = pa

[
1 +

(h− z)
H

]γ/(γ−1)

(2.11)

ρ(x, z, t) = ρi

[
1 +

(h− z)
H

]1/(γ−1)

, (2.12)

where pa is the ambient pressure and ρi = ρgi/(1−φ) is the density of the mixture at
z = h.

2.3. Density scale height

In a hydrostatic pressure field, density changes become important over a height
ρ/|dρ/dz|. Hence, using (2.12), we define the density scale height by

Hρ =H(γ − 1) =
γR(1− φ)Ti

g
=
γpa

ρig
. (2.13)

Thus, compressibility effects are important in a current of height h when h/Hρ & O(1).
The density scale height of an adiabatic atmosphere of the same temperature but
without particles is given by Hs = H(γg − 1) = γgRTi/g, where γg = cp/cv is the
isentropic exponent of the pure gas. Hence, Hρ � Hs because (1 − φ) � 1 for the
mass fractions common in the flows that we are considering (i.e. the presence of
particles greatly reduces the scale height).

We present typical parameter values for a pyroclastic flow mixture in table 1.
The gas phase in some pyroclastic flows is predominantly water vapour for which
γg ≈ 1.26 (Kieffer 1984), whereas the Earth’s atmosphere has γg ≈ 1.4 (Gill 1982).
These variations are relatively unimportant when particles are present (Kieffer 1984).
The isentropic exponent γ of the mixture takes values between γ = γg (corresponding
to φ = 0) and γ = 1 (corresponding to φ = 1). The density scale height for a typical
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Initial mass fraction of particles φ0 0.96
Particle density ρp 2000 kg m−3

Initial height h0 1 km
Initial temperature at the top Ti0 500 K
Particle settling velocity vs 0.5 m s−1

Gas constant R 462 J K−1 kg−1

Specific heat at constant pressure of the gas cp 1600 J K−1 kg−1

Specific heat of the solid particles (pyroclasts) c 1600 J K−1 kg−1

Isentropic exponent of the gas γg 1.4

Table 1. Two-phase mixture conditions of gas and particles in the pyroclastic flow. Typical values
are taken from Woods (1995) and Dade & Huppert (1996).
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Figure 2. Density scale height of a pyroclastic flow as a function of particle mass fraction, calculated
for the typical values in table 1. Estimates of h0 and Hρ for the Taupo pyroclastic flow from the
180 AD Taupo eruption in New Zealand are taken from Dade & Huppert (1996). The volume
fractions φρ/ρp, calculated with ρg = 0.4 kg m−3, are small even when the mass fraction φ reaches
0.99.

pyroclastic flow is shown in figure 2 as a function of particle mass fraction. For large
particle mass fractions, Hρ �Ha ≈ 10 km (Gill 1982), where Ha is the density scale
height of the atmosphere.

2.4. A stationary vertical column in the atmosphere

Consider a stationary vertical column of height h of a fixed mass of a gas–particle
mixture in the atmosphere, with temperature, pressure and density profiles given
by (2.9), (2.11) and (2.12), and assume a hydrostatic pressure distribution in the
surrounding motionless atmosphere. Furthermore, variations in ρa are only significant
over heights comparable to Ha. For simplicity, we make the assumption, appropriate
for typical heights of particle-driven flows in the atmosphere, that h�Ha and hence
we take ρa to be uniform. The pressure pa at the top of the particle-laden column is
then given by pa = p0 − ρagh, where p0 is the atmospheric pressure at ground level
(z = 0). Furthermore, for the heights that we are considering, pa � ρagh (we take
p0 = 105 Pa and ρa = 1.2 kg m−3) and hence we make the approximation throughout
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Figure 3. (a) ρ̄g as a function of φ, in columns of height 5 km, 2 km, 1 km and 100 m. (b) ρ̄g as a
function of h, in columns with different particle mass fractions. All curves have pa = 105 Pa.

that pa = p0, a constant. Finally, by continuity of pressure at the top of the column,
pa = ρgiRTi, which couples the values of ρgi and Ti to pa. This implies that ρgi, Ti
and H are also constant.

It is instructive to examine how the density varies both as a function of the
particle mass fraction, and between columns of different heights. We introduce the
height-averaged density,

ρ̄ ≡ 1

h

∫ h

0

ρ dz =
pa

gh

[(
1 +

h

H
)γ/(γ−1)

− 1

]
, (2.14a, b)

and the height-averaged gas density is then given by ρ̄g = ρ̄(1 − φ). Figure 3 shows
the dependence of ρ̄g on the particle mass fraction for columns of different heights
and on column height for mixtures having different particle mass fractions.

The important parameters that influence the gas density in the column are h, Ti
and φ (which determines γ). These parameters determine the ratio h/Hρ and hence
the importance of compressibility effects. As the mass loading becomes large (φ→ 1),
the exponent in (2.14) becomes large since, as is readily shown from (2.6),

γ

γ − 1
=

γg

γg − 1
+

φ

1− φ
c

R
. (2.15)

Large variations in the gas density occur in this case because the mixture has the
compressibility of the gas, but with a much higher density due to the presence of the
solid particles. The large density leads to a large variation in the hydrostatic pressure
over the height of the column. We refer to the isentropic relations (2.10) to remark
that, since the pressure in the flow decreases rapidly for small decreases in particle
mass fraction, the density likewise decreases rapidly, while the temperature remains
nearly uniform. Thus, the solid particles have a buffering effect; they act as a heat
source for the expanding gas and so the temperature hardly changes.

3. Shallow-water theory without particle settling
In this section, we present analytical and numerical solutions for a current when

there is neither gravitational particle settling nor entrainment of particles (φ = φ0,
a constant). This corresponds, for example, to the early evolution of a current with
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vs � √gh0, where vs is the settling speed of the particles. Thus, the current has to
propagate many times its height before particle settling becomes significant.

3.1. Shallow-water equations

We consider a two-dimensional current of density ρ(x, z, t) created by the instan-
taneous release from rest of a fixed mass of a gas–particle mixture into a calm
surrounding atmosphere. The model can be extended to describe continuous release
or an axisymmetric flow in a similar manner to the incompressible case (Bonnecaze
et al. 1995). The high Reynolds number gravity current propagates under a balance
of inertial and buoyancy forces over a rigid, horizontal surface under an infinitely
high, incompressible, lighter layer of uniform density, as sketched in figure 1. For the
two-dimensional flow field u = (u, w), the inviscid equations of motion are

Dρ

Dt
+ ρ

(
∂u

∂x
+
∂w

∂z

)
= 0, (3.1)

ρ
Du

Dt
+
∂p

∂x
= 0, (3.2)

ρ
Dw

Dt
+
∂p

∂z
+ ρg = 0, (3.3)

where x and z are the horizontal and vertical coordinates and p is the pressure.
Soon after the stationary gas–particle mixture collapses, it quickly spreads so that its

characteristic horizontal lengthscale L is much greater than its characteristic thickness
H . As we shall see, the characteristic horizontal velocity is (gH)1/2 and hence, by
continuity, the characteristic vertical velocity is (H/L)(gH)1/2. From (2.13) the speed
of sound in the mixture is of order (gHρ)

1/2. We consider the case H = O(Hρ),
in which compressibility affects the horizontal propagation, but (H/L)2H � Hρ so
that hydrostatic equilibrium can be established in each vertical column on a shorter
timescale than propagation of the current. Equation (3.3) reduces to

∂p

∂z
+ ρg = 0, (3.4)

and we can use the results of § 2.2 to describe the vertical pressure and density profiles.
Once the current has spread sufficiently that its height h(x, t) varies only slowly

over the horizontal distance x (i.e. ∂h/∂x � 1), following Bonnecaze et al. (1993),
the overall behaviour of the flow can be studied by neglecting the variation of the
horizontal velocity over the height of the current. We assume that vigorous turbulent
motion ensures that horizontal momentum is vertically well-mixed, in the same way
that it ensures a vertically uniform particle concentration. With these assumptions,
we replace the velocity by its average value u(x, t) over the height of the current. Such
a simplification is valid when there are no abrupt variations in the height; clearly, it
will not hold in the immediate vicinity of the front.

The approximation that u is independent of z allows us to integrate the governing
equations over the height of the current. We use (2.14) to express the height-integrated
continuity and horizontal-momentum equations as

∂

∂t
(ρ̄h) +

∂

∂x
(ρ̄uh) = 0, (3.5)

∂

∂t
(ρ̄uh) +

∂

∂x
(ρ̄u2h) +

∂

∂x
(p̄h− pah) = 0, (3.6)
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Figure 4. Steady flow past a stationary wedge of fluid of constant density.

where p̄ = (
∫ h

0
p dz)/h. Alternatively, we can express (3.6) in terms of the height-

averaged density by

∂

∂t
(ρ̄uh) +

∂

∂x

(
ρ̄u2h+

γ − 1

2γ − 1
ρ̄ghH

(
1 +

h

H
)
− γ

2γ − 1
pah

)
= 0. (3.7)

We note that the shallow-water equations for an incompressible gravity current, as
given by Bonnecaze et al. (1993), can be recovered by taking the limit h/Hρ → 0 of
these equations.

3.2. The front condition

Here, we consider the steady gravity-driven flow of a compressible gas–particle
mixture and employ a technique similar to that of Benjamin (1968) to derive a
moving boundary condition (a front condition) at x = xF (t), which is required for
closure to the shallow-water equations. We consider a wedge of a stationary gas–
particle mixture in a frame of reference moving with the current and balance the
flow force (the momentum fluxes plus the pressure forces) between upstream and
downstream regions in a control volume of the surrounding steady flow, as shown in
figure 4. The fluid overlying the stationary wedge is incompressible, with a uniform
density ρa, and the pressure variation with height is hydrostatic at upstream and
downstream cross-sections. The height and the flow speed are constant far upstream
and we assume that the flow speed is constant downstream.

We couple the momentum-integral theorem and conservation of mass. Then, as-
suming no energy loss, application of Bernoulli’s theorem along the free surface of the
wedge between the stagnation point O and the downstream cross-section, indicates
that the front condition is given by

u = Fr[(ρ̄− ρa)gh/ρa]1/2 (x = xF (t)), (3.8)

where Fr =
√

2. This reduces to the result found by Benjamin (1968) in the incom-
pressible limit h/Hρ → 0. The Froude number has a theoretical value of

√
2 for an

energy-conserving flow. However, viscous drag and turbulent Reynolds stresses result
in additional momentum loss at the front of a real current, yielding a slower flow;
Huppert & Simpson (1980) established the experimental value Fr = 1.19.

The derivation of (3.8) is based on a motion driven by gravity and resisted by
the inertia of the surrounding fluid (i.e. external drag), in which the inertia of the
moving layer plays no role since the frontal wedge is stagnant in the moving frame
of reference. For a typical pyroclastic flow, ρ̄/ρa ≈ 16 (cf. the parameters given in
table 1 with ρa = 1.2 kg m−3 at 10 ◦C). For these large density ratios, it seems likely
that the inertia and Reynolds stresses in the heavier fluid play a significant role and
hence that the Froude number will be some function of the density ratio between the
two fluids. This function must be determined experimentally (or numerically). See,
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for example, Grobelbauer, Fannelop & Britter (1993). In our modelling of pyroclastic
flows, we write the front condition as

u = Fr[(ρ̄− ρa)gh/ρ̄]1/2 (x = xF (t)), (3.9)

where Fr may still be a function of ρ̄/ρa, but is expected to be O(1) for both small
and large density ratios. We take Fr = 1.19 in the numerical results.

In this shallow-water analysis, we consider only currents that have large mass
fractions φ ≈ 1 and ρa/ρ̄� 1; hence, we neglect ρa and replace (3.9) by

u = Fr(gh)1/2 (x = xF (t)). (3.10)

Numerical solutions may be obtained to the full problem in which neither the atmos-
pheric density nor the variation of interfacial quantities with height are neglected.
However, the algebra is considerably more complex and the equations do not admit
analytical solutions. Hence, we restrict our shallow-water analysis to the case described
above.

3.3. Non-dimensionalization

It is convenient to non-dimensionalize the shallow-water equations and boundary
conditions using initial parameters of the current. We non-dimensionalize lengths by
the initial height of the current h0, time by (h0/g)1/2, velocity by (gh0)

1/2 and density
by ρi. The resulting dimensionless shallow-water equations and boundary conditions
are given by

∂

∂t
(ρ̄h) +

∂

∂x
(ρ̄uh) = 0, (3.11)

∂

∂t
(ρ̄uh) +

∂

∂x

(
ρ̄u2h+

γ − 1

2γ − 1

ρ̄hH
h0

(
1 +

h0h

H
)
− γ − 1

2γ − 1

hH
h0

)
= 0, (3.12)

u = 0 (x = 0), (3.13)

u = Fr
√
h (x = xF (t)), (3.14)

where

ρ̄h =
H
h0

γ − 1

γ

[
(1 + h0h/H)γ/(γ−1) − 1

]
(3.15)

and all variables are now dimensionless. The dimensionless system depends on Fr and
two parameters, h0/H and γ, that describe the effects of compressibility. Finally, we
consider a current that is formed by the release of a fixed mass of fluid plus particles.
The total mass per unit width of the current is given by

m =

∫ xF (t)

0

ρ̄h dx. (3.16)

If there is no entrainment and no particle loss then m is constant, while m = m(φ)
otherwise.

3.4. Analytical similarity solutions

The effects of compressibility are important if h0h/Hρ � 1, which requires γ− 1� 1
or h0h/H � 1. If h0h/H = O(1) while γ − 1 → 0, which is the case of practical
significance for pyroclastic flows, then it is apparent from the limit of (3.15) that
there is no similarity solution to the governing equations (3.11)–(3.16). However, in
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Figure 5. Self-similar solutions for velocity U(η) and height H(η) with γ = 1.4 and Fr = 1.19. The
solid curve shows H(η) for h0h/Hρ � 1; the dashed curve shows H(η) for h0h/Hρ � 1. The velocity
U(η) (long-dashed) is the same in both limits.

the limit h0h/Hρ � 1 with γ − 1 = O(1) (3.11) and (3.12) become

∂

∂t
(hγ/(γ−1)) +

∂

∂x
(uhγ/(γ−1)) = 0, (3.17)

∂

∂t
(uhγ/(γ−1)) +

∂

∂x

(
u2hγ/(γ−1) +

γ − 1

2γ − 1
hhγ/(γ−1)

)
= 0. (3.18)

Estimates of the terms in (3.17) and (3.18) suggest the order-of-magnitude scalings

u ∼ x

t
, h ∼ u2 and hγ/(γ−1)x ∼ m̃, (3.19)

where m̃ = m[γ/(γ − 1)](H/h0)
1/(γ−1) and the last balance has been deduced from the

limiting form of (3.16). These balances are the basis for a similarity solution

u(x, t) = ẋF (t)U(η), h(x, t) = [ẋF (t)]2H(η), (3.20)

where

η = x/xF (t), H(η) =
γ − 1

4γ
(η2 − 1) +

1

Fr2
, U(η) = η,

xF (t) =

[
m̃γ−1

(
3γ − 1

2γ

)2γ (∫ 1

0

Hγ/(γ−1) dη

)1−γ]1/(3γ−1)

t2γ/(3γ−1).

 (3.21)

This solution will cease to hold when h has decreased sufficiently that hh0/Hρ ∼ 1.
From (3.20) and (3.21), this is when t ∼ (h0/Hρ)

(3γ−1)/(2γ−2).
In the limit h0h/Hρ → 0, equations (3.11) and (3.12) also possess a similarity

solution, given by (3.20), where now

U(η) = η, H(η) = 1
4
(η2 − 1) +

1

Fr2
, xF (t) =

[
27Fr2x0

(12− 2Fr2)

]1/3

t2/3, (3.22)

and x0 is the dimensionless fixed volume of the current. This is the incompressible
shallow-water similarity solution given by Bonnecaze et al. (1993).

Figure 5 shows the self-similar velocity and height profiles in the two limits
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Figure 6. Frontal position xF as a function of time for (a) h0/Hρ = 250 and γ = 1.4 and
(b) h0/Hρ = 2.5 × 10−3 and γ = 1.4. In (a) the full numerical solution (solid curve) asymptotes to

the form xF ∝ t2γ/(3γ−1) (dashed line), indicating the long-time self-similar behaviour (cf. (3.21));
while in (b) the full numerical solution (solid curve) asymptotes to the form xF ∝ t2/3 (dashed line),
indicating the long-time self-similar behaviour (cf. (3.22)). The currents have initial length equal to
the initial height.

h0h/Hρ � 1 with γ−1 = O(1), and h0h/Hρ � 1. The height profiles change abruptly
at η = 1 due to the front condition. The velocity profile is the same in both limits; it
increases linearly from U(0) = 0 at the tail of the current to U(1) = 1 at the front.
In both limits, the height increases quadratically towards the front. This increase
contributes to a horizontal pressure gradient over the length of the current, with the
largest pressure at the front, resulting in a deceleration behind the front. The increase
in height towards the front is not as pronounced for the compressible current, which
decompresses and expands laterally as it lengthens and thins, yielding a more uniform
height over its length.

3.5. Numerical results

When h0h/Hρ = O(1), there are no analytical solutions to (3.11)–(3.14) and we obtain
numerical solutions using the method described in the Appendix. Figure 6 plots the
numerical and similarity solutions for compressible (h0h/Hρ � 1) and incompressible
(h0h/Hρ � 1) currents. In the initial phase of the current, the mixture collapses
and approaches its self-similar form, which it attains before t = 10. The subsequent
self-similar propagation depends on the initial mass or volume of the current, but
not on the initial aspect ratio or velocity, as is evident from the form of (3.21) and
(3.22).

Height profiles for compressible gravity currents are shown in figure 7. The fixed-
mass currents start from rest with initial lengths equal to their starting heights.
The currents collapse, lengthen and thin, ultimately assuming the self-similar form
for h0h/Hρ � 1. The profiles in figure 7(a) correspond to a particle-free current
with an initial height of 100 m (all other parameters are given in table 1). This is
essentially an incompressible current; it has a large density scale height that is not
reduced by the presence of particles, and an initial height that is much less than this
density scale height. The results are indistinguishable from those computed using an
incompressible model. The profiles in figure 7(b) correspond to a current with a mass
fraction φ0 = 0.96 (scale height Hρ about 1 km) and an initial height h0 of about
1 km. Compressible effects play an observable role in this case because the current has
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Figure 7. Numerically determined height h(x, t) profiles of a collapsing gravity current with
(a) h0/Hρ = 3 × 10−3, γ = 1.4, (b) h0/H = 0.012 and φ0 = 0.96 (h0/Hρ ≈ 1 and γ ≈ 1.01) and
(c) h0/H = 0.06 and φ0 = 0.96 (h0/Hρ ≈ 5 and γ ≈ 1.01). The left-hand panels show early times
and the right-hand panels later times. The more compressible currents, (b) and (c), expand and
propagate faster in dimensionless variables than the almost incompressible current (a). (Dimensional
velocities are proportional to (gh0)1/2.)

a larger initial height than the current of figure 7(a), combined with a smaller density
scale height caused by a large particle mass fraction. The overall structure of this
current is similar to that of the incompressible current with the main distinguishing
feature being an initial decompression (and associated volume expansion) upon
collapse of the compressible current. This can be seen in the difference in height
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Figure 9. xF as a function of time for currents having different particle mass fractions φ, and
hence different values of γ. The dashed curve is for an incompressible current. (a) h0/H = 0.012
and (b) h0/H = 0.06. The currents propagate more rapidly for larger values of h0/Hρ due to
decompression.

profiles between the two currents at early times (t = 2, 3). The profiles in figure 7(c)
correspond to a current with φ0 = 0.96 and a rather large initial height (h0 = 5 km).
The volume expansion is now clearly evident by comparison of these profiles to the
profiles of the incompressible current. The compressible currents decompress as they
lengthen and thin, with the most rapid decompression occurring just after release
of the mixture, when the most rapid thinning occurs. The density of the fixed mass
mixture decreases as it decompresses and expands.

Figure 8 shows the volume expansion as a function of time for the currents in
figure 7(b, c). The mixture decompresses to a maximum volume Vmax = m/ lim

h→0
ρ̄ as the

density decreases to that of the mixture at atmospheric pressure. The decompression
takes longer for the current with the larger initial height (figure 8b).

Figure 9 shows the front position as a function of time for currents having different
particle mass fractions for two values of h0/H. The curves show that the frontal
speed is larger for a current with a larger particle mass fraction at a given ratio of its
initial height relative to its density scale height in the absence of particles. The frontal
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speed is largest for a current having a high mass fraction of particles and a large
initial height relative to its density scale height in the absence of particles. Hence,
the curves show that a compressible current propagates faster than an incompressible
current for the same initial height. This is because the internal energy of compression
is released upon decompression and transformed into kinetic energy of motion. The
faster front speed of a compressible current can also be explained in terms of forces:
the expansion results in a less rapid thinning (than an incompressible current) and
maintains a larger driving pressure gradient ∂(p̄h)/∂x.

4. The effects of particle settling
Particle-settling currents are more complex than their non-settling counterparts

because decreases in the particle mass fraction due to settling over time alter the
thermodynamic properties, and hence the driving buoyancy force, in a manner that
is not straightforward. We do not attempt to solve the full shallow-water equations
numerically, but rather we employ a simpler model that captures the essential physical
processes. Furthermore, we show that a full numerical solution of a settling, com-
pressible gravity current is unnecessary because particle settling influences the flow
dynamics only after the current has attained its self-similar form for h0h/Hρ � 1. At
this stage, the current has thinned sufficiently to be modelled as incompressible and
the particle-settling shallow-water model of Bonnecaze et al. (1993) fully describes
the dynamics.

4.1. Box-model formulation

We construct a box model of the flow to elucidate the effects of particle settling. The
basis of the model is that the evolution of the current is assumed to occur through a
series of rectangles containing a constant mass of gas (neglecting entrainment) and a
uniform distribution of particles. The total mass of the current decreases as particles
settle from the current. This horizontally averaged model gives the correct qualitative
behaviour and dependence on parameters, while having the advantage of being simple
to formulate. We compare our box-model results with our shallow-water numerical
results to show that the simplified model is sufficient for our purposes.

The variables in this section are non-dimensionalized in the same manner as in
§ 3.3, with densities non-dimensionalized by the initial density ρi0 = ρgi/(1−φ0) at the
top of the current, corresponding to the initial particle mass fraction φ0. Recall that
the gas density ρgi at the top of the current is constant under the assumption that pa
is uniform over the height scales considered. Furthermore, in this section we assume
that the ambient density is equal to the gas density at the top of the current.

The flow to be described by the box model results from the release of an initially
stationary mass of a dense gas–particle mixture, which we take initially to have the
same length and height. The constant (dimensionless) mass of gas is given by

mg = xF

∫ h

0

ρg dz = xFρ̄gh, (4.1)

where the height-averaged gas density is given by

ρ̄g =
(1− φ)χ

h

[
(1 + h0h/H)cp/[R(1−φ)] − 1

]
; (4.2)

χ = HR(1 − φ0)/(h0cp) is a constant and we have expressed γ in terms of φ(t) with
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cpm = cp. We obtain the constant mg using the initial parameters of the current,

xF (t = 0) = 1, h(t = 0) = 1 and φ(t = 0) = φ0, (4.3)

and use (4.1) to express the height of the current in terms of its length and mass
fraction.

Two first-order differential equations describe the evolution of the current. The first
equation is the particle-evolution equation. The particle mass fraction φ(t), which is
well-mixed in the current, varies in time due to gravitational particle settling. We
neglect particle entrainment into the current. As in the analysis of Bonnecaze et al.
(1993), we assume that the particles settle out through a small viscous sub-layer at
the base of the current where the turbulent gas velocities are diminished to such an
extent that the particles leave the base of the current with a flux vsφ, where vs is the
settling speed. This is an appropriate assumption for dilute particle concentrations
where particle–particle interactions may be neglected. We assume that the current
has a monodisperse system of particles with the same settling speeds; the box model
could be modified to account for a distribution of particle-settling speeds (Dade &
Huppert 1996). The conservation law for the particles is given by (Martin & Nokes
1988)

dφ

dt
= −φβ

h
, (4.4)

where the settling number β = vs/(gh0)
1/2 is a non-dimensional settling velocity. Hence,

the rate of decrease of the mass fraction of particles in the current increases as the
height h(t) of the current decreases. This model, as well as one which incorporates the
advection of particles by the mean flow, has been used successfully in incompressible
shallow-water and box models of turbulent, particle-laden flows (Huppert 1998, 2000).

To obtain the second equation, we assume that gravitational collapse is controlled
at the head of the current. Hence, from the front condition (3.10), where u is now
expressed as dxF/dt, we obtain

dxF
dt

= Fr

√
h

(
1− (1− φ0)

ρ̄

)
, (4.5)

where ρ̄ = ρ̄g/(1− φ).

4.2. Box-model solutions

In the incompressible limit h0/Hρ → 0, there is an analytical solution for the final
run-out length of the current, at which point φ = 0. There is no such analytical
solution in the compressible case.

We note that in the limiting cases h0h/Hρ � 1 and hh0/Hρ � 1, for a fixed particle
mass fraction such that γ− 1 = O(1) and ρ̄� ρa, the box model (4.1)–(4.5) yields the
same forms, as it must, as the similarity solutions valid in those limits. Solutions to
the box model in these limits for a non-settling current are given by

h0h/Hρ � 1: xF (t) =

(
Fr2γm̃γ−1

(
3γ − 1

2γ

)2γ
)1/(3γ−1)

t2γ/(3γ−1), (4.6)

h0h/Hρ � 1: xF (t) = ( 9
4
Fr2x0)

1/3t2/3, (4.7)

where m̃ = m[γ/(γ − 1)](H/h0)
1/(γ−1). These solutions only differ from the shallow-

water similarity solutions in the multiplicative constants.
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Figure 10. (a) The volume determined by the box model as a function of xF for currents with
h0/H = 0.012 and φ0 = 0.96, having different settling numbers β. The corresponding results of the
full shallow-water model, with β = 0, (the dashed curve) are also shown. (b) φ as a function of xF
for the currents in (a).

Numerical solutions to (4.1)–(4.5) are shown in figure 10. The volume and mass
fraction are plotted as a function of xF for currents with two different settling
numbers. The corresponding results of the shallow-water model (β = 0) indicate that
the box model (with β = 0) yields predictions that agree with our numerical results
from the full shallow-water model. Figure 10(a) shows that faster particle settling
speeds result in a more rapid decompression. During the volume expansion, the
density decreases rapidly for only small decreases in φ from the initially large mass
fraction (cf. figure 3). At long times, the volume asymptotes to the same maximum
value Vmax for both settling and non-settling currents, independent of the value of β.
The current attains a (dimensionless) maximum volume given by

Vmax =
mg

lim
h→0

ρ̄g
=

mg

(1− φ0)
. (4.8)

While sedimentation plays an important role in the rate of decompression of the
mixture, figure 10(b) shows that only a small fraction of the particles leaves the
current during the decompression phase, since the scale height increases rapidly as
φ decreases from values very close to 1 (figure 2). The majority of settling occurs
after the current achieves an essentially constant volume, which is an even more rapid
process for a settling current. Bonnecaze et al. (1993) incorporated particle settling
into their shallow-water model of an incompressible current and showed that there
is no significant effect of particle settling on the flow dynamics before the current
evolves to its self-similar form given by (3.22).

Figure 11 compares the length as a function of time for the current in figure 10,
with no settling and for two different settling numbers. At early times, the lengths of
the settling currents are the same as the lengths of the non-settling currents. At later
times, the lengths of the settling currents become less because of the reduction in the
buoyancy driving force with mass loss through sedimentation.

5. Conclusions
We have demonstrated the important effects of compressibility in gas–particle

gravity currents in which the flow thickness is comparable in magnitude to the
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Figure 11. xF as a function of time for the current in figure 10, determined by the box model. The
corresponding results of the full shallow-water model (β = 0) are shown by the dashed curve.

density scale height of the flow. The presence of particles in the gas can greatly
reduce the scale height by having a significant effect on the bulk density without
significantly reducing the compressibility. Hence, we have incorporated a pressure-
dependent density into shallow-water and box models of the flow, including the
contribution of particles to the density and thermodynamics.

We have shown that the shallow-water equations, together with the front condition,
for a compressible current with constant particle mass fraction admit similarity
solutions in the two limits of a very large current thickness relative to its density scale
height and vice versa. We have numerically solved the shallow-water equations for
the case of no particle settling and verified the similarity solutions by the numerical
results. The main feature of compressible currents that distinguishes them from
incompressible currents is that the mixture decompresses upon gravitational collapse.
As a result, these flows travel faster than their incompressible counterparts because
the internal energy of compression, together with some buffering thermal energy from
the particles, becomes available upon decompression to be transformed into kinetic
energy of motion. The effects of compressibility decrease as the current spreads and
thins, and can be ignored after the height of the current becomes much less than the
density scale height of the mixture.

We have formulated a box model, in which we assume that there is no horizontal
variation of properties in the flow, to capture the essential features of particle settling
during the decompression phase of a particle-laden flow. The box model gives a
good indication of the shallow-water model results for a non-settling current. We
show that only a very small fraction of particles settles out of the current during the
decompression phase because the small mass loss leads to a rapid decompression.
Compressibility is thus most important in the initial stages and proximal region of
a pyroclastic flow, and serves to establish a connection between the dense eruption
conditions and the more distal behaviour, which can be modelled by simpler incom-
pressible models. The extent of compressible effects depends chiefly on h0 and φ
(figure 2).

The volume expansion and faster propagation speeds have important implications
for the interactions of compressible flows with regional topography, for example,
ridges and mountains. At the larger volumes and speeds, particle-driven gravity
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currents can pass over higher topographic barriers, so that the potential devastation
zone becomes greater. Moreover, hazard assessment becomes more difficult because
decompression results in velocities larger than those of an incompressible current,
putting larger areas at risk.

Application to Martian dust storms must be more speculative since in situ ob-
servations are not available. Nevertheless, we note that, because of the free upper
surface, these compressible currents do not support gas dynamic shocks. Though the
flow velocities can be greater than the sound speed in the mixture, it is unhelpful to
think of analogies to supersonic flow, since the pressure distribution remains hydro-
static. Instead, we note that these gravity currents, like all gravity currents, support
hydraulic jumps both within the current and at the front. The mechanism of particle
entrainment and self-ignition for Martian dust storms, as invoked by Parsons (2000),
may thus be related to these hydraulic jumps rather than to compressible shocks.

In order to focus on developing a description of the effects of compressibility
in a particle-driven gravity current, we have focused on the simplest case, namely
one-dimensional propagation of a finite-volume monodisperse release on a horizontal
plane. It is straightforward to adapt this description for the cases of continual release,
axisymmetric spread, polydispersity and flow on a slope (Bonnecaze et al. 1995;
Bonnecaze, Huppert & Lister 1996; Bonnecaze & Lister 1999). Axisymmetric currents
will, of course, decompress more rapidly owing to the geometrical spreading. The
assumption of complete vertical mixing of particles, momentum and entropy could be
relaxed at the expense of introducing a closure model for the suppression of turbulence
by internal stratification (Parker, Fukushima & Pantin 1986). Re-entrainment of
particles might be possible in some circumstances, with the modelling of turbulent
pick-up rates also relying on a semi-empirical approach. In each of these more
complicated extensions to our work, the dynamical significance of compressibility, the
reduction of the density scale height by particle loading, and the ratio of the height
of the current to the density scale height are expected to carry over from the simple
case.

Appendix. Numerical method
We solved the shallow-water equations numerically by adapting the numerical

scheme of Bonnecaze et al. (1993) to include the effects of compressibility. This
scheme is based on the two-stage Lax–Wendroff scheme, which is explicit and second
order in both time and space. A small nonlinear dissipation term is introduced
to suppress spurious oscillations near shocks. While the evolution of the interior
points is fully specified in the two-stage Lax–Wendroff scheme, there are problems
at the boundaries. To obtain a unique solution, we need to specify u and h at each
boundary. We have two boundary conditions, one at the front and the other at the
tail, while we must determine four variables and hence we need two more conditions
at the boundaries. For this hyperbolic system of equations, the number and location
of the specified boundary conditions are the same as the number and location of
the characteristics that propagate into the flow domain. We derive the additional
conditions at the boundaries from the characteristic equations that hold along the
characteristics which propagate out of the flow domain.

We introduce the conservative variable l = ρ̄h to express (3.11) and (3.12) in matrix
form as

∂

∂t

(
l
u

)
+

(
u l
a2/l u

)
∂

∂x

(
l
u

)
=

(
0
0

)
, (A 1)
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where

l =
γ − 1

γ

H
h0

[(
1 +

h0h

H
)γ/(γ−1)

− 1

]
, (A 2)

a2 = l

(
1 +

hh0

H
)(

1 +
γ

γ − 1

lh0

H
)−1

. (A 3)

The eigenvalues of the coefficient matrix in (A 1) give the two characteristic velocities
in the flow, u ± a, corresponding to the forward and backward propagating wave
speeds for shallow-water waves. Using the corresponding right eigenvectors (±a/l, 1)
of the coefficient matrix, we deduce the relationships between the variables on the
characteristics

du± a

l
dl = 0 on

(
dx

dt

)
±

= u± a. (A 4)

Hence, with the boundary conditions, we have two equations and two unknowns on
each boundary.

The front of the current is a moving boundary and, following Bonnecaze et al.
(1993), it is convenient to transform the governing equations from the (x, t) coordinate
system to a (y, τ) coordinate system where y = x/xF (t) and τ = t, so that the new
spatial coordinate y lies between 0 and 1; the front of the current is at the fixed point
y = 1. The differentials are given by

∂

∂t
=

∂

∂τ
− y ẋF

xF

∂

∂y
and

∂

∂x
=

1

xF

∂

∂y
, (A 5)

where ẋF = dxF/dt. We apply these differential transforms to (A 1) and introduce
another conservative variable, q = ρ̄uh, to obtain

∂l

∂t
=

1

xF

(
yẋF

∂l

∂y
− ∂q

∂y

)
,

∂q

∂t
=

1

xF

(
yẋF

∂q

∂y
− ∂

∂y

[
q2

l
+

γ − 1

2γ − 1

(
l
H
h0

(1 + h0h/H)− hH
h0

)])
,

 (A 6)

where we have replaced τ by t. Finally, the characteristic equations satisfied along
characteristics that propagate out of the flow domain are given by

du− a

l
dl = 0 on

dy

dt
=

1

xF
(u− yẋF − a),

u = 0 at y = 0,

 (A 7)

and

du+
a

l
dl = 0 on

dy

dt
=

1

xF
(u− yẋF + a),

u = Fr
√
h at y = 1,

 (A 8)

where we have also restated the boundary conditions.
The numerical scheme was verified by comparisons of the height and velocity

profiles with previous incompressible calculations and with the similarity solutions,
and by the usual checks of robustness with respect to variations of time step and grid
spacing.
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